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Abstract—Handheld phone distraction is the leading cause
of traffic accidents. However, few efforts have been devoted
to detecting when the phone distraction happens, which is
a critical input for taking immediate safety measures. This
work proposes a phone-use monitoring system, which detects
the start of the driver’s handheld phone use and eliminates
the distraction at once. Specifically, the proposed system emits
periodic ultrasonic pulses to sense if the phone is being held in
hand or placed on support surfaces (e.g., seat and cup holder)
by capturing the unique signal interference resulted from the
contact object’s damping, reflection and refraction. We derive
the short-time Fourier transform from the microphone data to
describe such impacts and develop a CNN-based binary classifier
to discriminate the phone use between the handheld and the
handsfree status. Additionally, we design an adaptive window-
based filter to correct the classification errors and identify each
handheld phone distraction instance, including its start, end,
and duration. Extensive experiments with fourteen people, three
phones and two car models show that our system achieves 99%
accuracy of recognizing handheld phone-use instances and 0.76-
second median error to estimate the distraction’s start time.

I. INTRODUCTION

Using a handheld device while driving is a dangerous

behavior. The driver can be impacted by all three types of dis-

tractions from the phone (i.e., visual, manual, and cognitive),

which increases the risk of crashing by up to 23 times [1].

Though law enforcement and insurance penalty policies help

raise public awareness and lower car accidents, they achieve

limited effects. Reports show that handheld device distractions

cause 1.6 million crashes annually in the U.S., and 2018

alone, over 400, 000 people were injured or killed in car

accidents related to cell phone use [2]. Since the COVID-

19 pandemic, a 17% increase in driver phone use has been

found, because more people attempt to take Zoom calls, read

Instagram messages, or text while driving [3]. More efforts

are still in urgent need to reduce the driver’s handheld phone

use to improve traffic safety.

There has been active work on using the smartphone itself

to prevent distractions. By recognizing when the phone user

is driving, the smartphone could automatically turn on the do-

not-disturb mode and prohibit phone use (e.g., delaying mes-

sages and routing calls to voice mail). For example, the cell-

phone handovers and signal strength variations can be used to

recognize a phone in a moving car [4]. To further discriminate

the phone user to be a driver or passenger, researchers have

developed the in-vehicle localization methods, which estimate

whether the phone is closer to the driver seat or the passenger

seat [5], [6]. However, most users refuse to disable phone

services completely while driving though acknowledging the

dangers [7]. They may have concerns about missing important

notifications and calls during long-distance driving. They may

also prefer to use the less distracting and legally allowable

handsfree phone operation, ask the passenger to read/reply or

pull over to a safe area to cope with emergencies. Thus, it is

more practical and effective to prevent a driver from reaching

out to the phone rather than disabling all phone services for an

entire trip. More specifically, we need to know when a driver

holds the phone to stop the phone distraction at once.

This work aims to capture the precise timing (e.g., start,

end and duration) of each distracted driving instance, which

is a critical input to numerous safety systems for taking

immediate safety measures. For example, knowing when the

driver picks up the phone, all Apps could be shut down by

the phone at once except the emergency calls. And the nearby

automobiles (especially smart cars) could be notified to take

precautionary measures. Additionally, such information could

be used for determining who is at fault in a car accident or

personalizing insurance rates. The prior work to monitor the

driver’s phone use mainly relies on monitoring the display

on/off, the phone lock status, the phone lifting action [8], and

the phone dynamics related to distracting phone activities (e.g.,

texting and calling) [9]. But based on such indirect phone-use

indicators, these methods are hard to determine the detailed

timing of each distracted driving instance. Moreover, they

have limited abilities to cover the diverse phone distraction

scenarios and are not sufficiently reliable in the practical in-

vehicle environment, which is noisy.

Different from the prior work, we propose to monitor the

driver’s phone use between the handheld and the handsfree

status by directly sensing the gripping hand, which enables

eliminating the distraction or reducing the impact at once.

We develop a phone-use monitoring system based on acoustic

sensing, which starts to work when the phone user has been

identified as the driver by existing methods [5], [6]. The

smartphone’s speaker emits ultrasonic pulses periodically to

sample the phone-use status. The acoustic signals traveling on

the device surface could be uniquely damped, reflected and

refracted by a gripping hand. The resulting signals reaching the

smartphone microphones are then different from the scenarios

when the phone is placed on a seat, cup holder, pocket or

phone mount, due to their unique materials and contact areas.

Based on that, our system accurately detects when the driver
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grabs/holds/drops the phone within a second. Because no ad-

ditional hardware is required, users of our system can continue

to use their existing cars without technological restrictions.

In particular, we develop a CNN-based distracted driving

prevention system, which continuously monitors the phone-

use status and captures distracted driving activities promptly.

Each pulse sound received by the smartphone microphone

is used to derive the short-time Fourier transform, which

describes the unique time-frequency characteristics of the

signal interference caused by the gripping hand or a support

surface in the vehicle. Moreover, we develop a CNN-based

binary classifier to discriminate whether the smartphone is

handheld or handsfree. The binary classification decisions

from the periodic sensing pulses thus provide the continuous

monitoring of the phone use. We further develop an adaptive

window-based filter to correct the error samples, whose phone-

use status toggles too quickly between handheld and handsfree

to represent a human activity. Based on that, we determine the

start, end and duration of each handheld phone-use activity.

Our contributions can be summarized as:
• This work proposes a continuous phone-use monitoring

system to eliminate the driver’s handheld device distraction.

The proposed system leverages active acoustic sensing to

detect when the phone is held by the driver’s hand and take

safety-enhancing measures immediately.

• We derive the short-time Fourier transform from the sensing

sound to describe the phone’s contact object and develop a

CNN-based algorithm to discriminate the handheld phone

use from various handsfree scenarios.

• We design error correction mechanisms to process the

phone-use sampling results and facilitate capturing each

complete handheld phone-use instance and its detailed tim-

ing information accurately in noisy in-vehicle environments.

• Extensive experiments in the practical driving environment

show that our system captures the complete handheld phone-

use activities and accurately determines their start times.

II. RELATED WORK

There has been a rising interest in monitoring unsafe driving

behaviors. The vehicle’s speed, acceleration and deflection

angle can be estimated from the smartphone sensor data

to recognize the dangerous driving behaviors [10], [11]. To

improve the drivers’ awareness of their driving habits, Chen

et al. further classify the abnormal driving behaviors among

different vehicle maneuver types by using smartphone sen-

sors [12]. Xu et al. focus more on the driver’s attention and

use Doppler shifts of the phone audio signals to sense the

inattentive driving events, such as eating, drinking, and turning

back [13]. But none of these works could effectively address

the handheld device distraction, one of the leading causes of

traffic accidents.

The existing research efforts to prevent handheld phone

distraction are on discriminating the phone user to be the

driver or the passenger based on its in-vehicle location. Yang

et al. propose a relative-ranging system, which sends acoustic

signals in a programmed sequence from the stereo car speakers

and captures the time differences of their arrivals at the

phone to determine whether it is closer to the driver seat or

the passenger seat [5]. Wang et al. use the phone’s inertial

sensors to measure its centripetal acceleration when the vehicle

makes turns. By comparing to a reference point, they estimate

whether the phone is on the right or left side of the car [6].

Chu et al. release the requirement of additional infrastructure

and rely entirely on the smartphone sensors to differentiate the

micro-activities between the driver and the passenger, such as

with which foot to enter the car first and along which direction

to fasten the seat belt [14]. There are also infrastructure-

free methods to recognize the phone user during driving,

which localize the phone based on its motion dynamics or

camera views [15], [16]. However, these methods are far from

satisfactory to address the handheld device distraction, as they

cannot detect when the distracted driving happens to take

proper safety measures right away, which requires capturing

the interaction between the phone and the driver.

There are several solutions to capture phone-driver interac-

tions based on cameras. For example, Chuang et al. monitor

the driver’s gaze direction by using the smartphone front

camera [17]. A recent work installs multiple cameras in the car

to capture the interaction between the driver and the phone,

which complements the blind spots of each single camera [18].

However, these vision-based methods are limited by light

conditions (especially at night), camera view angles or high

installation overhead.

We propose to monitor phone-driver interactions based on

sensing the gripping hand. There have been several studies

on detecting grips of mobile devices. For example, the smart-

phone’s rotations, vibrations and touch events can be measured

by inertial sensors and the touchscreen to infer the user’s

phone-use postures, such as with which hand (or both hands)

to hold the device and which finger (e.g., index finger and

left/right thumb) to operate on the screen [19], [20]. These

are motion-driven approaches. Ono et al. attach a pair of

vibration motor and receiver on the phone case to recognize

the user’s hand postures [21], and Kim et al. achieve similar

functions based on acoustic sensing [22]. Both methods use a

support vector machine as the classifier. However, the above

studies all assume the phone is already in the user’s hand

and then recognize the type of phone grip. Few of them

investigate distinguishing a handheld phone from that placed

on many other surfaces such as a table, seat, and phone

mount. Furthermore, it is unknown whether they could work

in the in-vehicle environment, which suffers from complex

acoustic noises and vibration noises related to the engine, road

conditions, and the wind. More importantly, none of them is

able to demonstrate the user-phone interaction monitoring and

capture the phone-grip start, end and duration.

III. BACKGROUND AND SYSTEM ARCHITECTURE

A. Distracted Driving Instance

This work aims to prevent the distracted driving caused by

handheld phone use. We define a distracted driving instance
as the handheld phone-use activity, which begins from the
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Fig. 1. Illustration of the acoustic signal interacting with the driver’s hand.

driver’s hand reaching the phone and ends until the phone is

dropped off. This entire period is subject to the combination

of all three types of distractions (i.e., visual, manual and

cognitive). Compared to the single-distraction-type activities,

such as checking the navigation system (visual), making a

handsfree phone call (cognitive) and eating/driving (manual),

the handheld phone use is the most dangerous and is prohibited

by law. Therefore, to prevent the handheld phone use of a

driver, one efficient and direct way is to detect when and

how long the driver’s hand holds the phone and then disable

or restore the phone services accordingly. It also facilitates

sending early warnings, notifying the nearby automobiles,

assisting the law enforcement, and personalizing insurance

rates.

B. Sensing the Gripping Hand Acoustically

We leverage the acoustic signals that propagate on or near

the smartphone surface to sense the gripping hand or other

objects that come in contact with the phone. In particular,

we use the smartphone speaker to periodically send ultrasonic

signals for sensing. The signal traveling on the phone case

would be interfered by the driver’s gripping hand or the

support surfaces on which the phone is placed, such as

the seat and center console. The resulted sound reaching

the smartphone microphone contains the useful information

that could describe how differently the original signal is

damped, reflected and refracted by the gripping hand and the

support surfaces. Figure 1 illustrates how the acoustic signal

interacts with the driver’s hand, where the sound recorded

by the microphone includes the damped direct-path signal,

the reflected signals and the air-borne refracted signals (near-

surface). These signal components are mainly determined by

the material, area and pressure of the contact surface. Because

the hand’s skin, geometry and gripping strength are distinct

from that of any support surface in the car, the gripping hand

can be discriminated by acoustic sensing.

To show the feasibility, we play an ultrasonic chirp sound

using the smartphone’s own speaker, which sweeps from

18kHz to 22kHz in 25 ms. Figure 2 shows the waveforms of

the recorded sounds when the phone is on six different support

surfaces in a car, including a hand. We observe that the mi-
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Fig. 2. Acoustic response of different smartphone placement.

crophone recorded sound is distinguishable in the waveforms

among all the six phone placement scenarios, which shows

the potential of differentiating the gripping hand from the

other phone placement scenarios. Moreover, while the sensing

signal sweeps along the frequency, its amplitude is reinforced

or suppressed with different scales, and at the same frequency,

the amplitude change is also unique for each support surface.

This phenomenon reflects the frequency diversity of the sound

to sense the various support surfaces, which motivates us to use

the sound with rich frequencies rather than a single frequency

to achieve robust sensing.

C. Challenges

We also face some challenges when using acoustic signals

to sense the gripping hand. Specifically, we find that the

microphone keeps receiving sounds for a long time after the

sensing signal stops at 25ms as shown in Figure 2. These

sounds are mainly the environmental reflections, which are

much stronger in the confined space of the vehicle compared

to indoor or outdoor scenarios. They also heavily rely on

the in-vehicle phone locations and should not be used for

analysis. One exception is the in-pocket scenario, because the

fabric of the pocket is a good sound-absorbing material, which

damps the outward sounds and reduces the echoed back sounds

significantly. As a result, the in-pocket waveform is more

different from that of the other five scenarios. In comparison,

the handheld scenario is harder to be differentiated from the

center console, cup holder, and phone mount scenarios. We

thus rely on deep learning to recognize the handheld scenario.

Furthermore, different people’s hands may exhibit slight

differences when holding the phone, due to the individually

unique hand shapes and gripping strengths. Even the same

person may hold the device slightly different when texting,

scrolling and calling. These variances need to be considered

and addressed. Furthermore, our acoustic system must be

able to work under the noisy in-vehicle environment, where

the background noises are resulted from the different road

conditions, driving speeds and car audio sounds. Additionally,

to accurately estimate the start and end of a distracted driving

instance, our system needs to handle the classification errors

and the noisy transient states when the phone is being grabbed

or dropped off.
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Fig. 3. The periodic ultrasonic pulse signals for sensing.

D. System Design

The goal of our work is to eliminate the handheld phone-use

distraction based on detecting the gripping hand. To achieve

the goal and address the above challenges, we develop a

phone-use monitoring system, which sends unique signals for

sensing and uses a deep learning-based algorithm to recognize

the various in-vehicle phone-use statuses. Our system can

work with existing phone localization methods [5], [6] to

more effectively eliminate the handheld phone distraction.

For example, our system could start after the phone user is

identified to be the driver. Alternatively, our system could

continuously sense the phone use status, and once it is in a

hand, the phone localization method further confirms if this is

the driver’s hand.

1) Sensing Signal Design: The sensing signal is used to

interact with the object that is in contact with the smartphone

and capture its characteristics in the acoustic domain to

discriminate whether the phone is in the driver’s hand or on a

support surface of the vehicle. Based on our feasibility study

and challenge analysis in Section III-B and III-C, we design

the periodic ultrasonic pulse signal as shown in Figure 3.

In particular, each pulse signal lasts for a short period (i.e.,

25ms), and every two pulses are separated by a stop period

(i.e., 75ms). The short pulses suffer less from the echo sounds

which usually last for much longer, and the stop time reduces

the interference between adjacent pulses. Only the 25ms pulse

sound is used for analysis.

Moreover, each pulse signal is designed to sweep from

18kHz to 22kHz to leverage the rich frequency information,

which facilitates capturing more characteristics of the object in

contact with the phone. Besides, this high-frequency range is

not impacted much by the in-vehicle noises, which are mainly

on lower frequencies. The sounds in these frequencies are

also demonstrated to be hardly audible and not invasive [23].

Furthermore, to reduce the spectral leakages and the speaker

hardware noises caused by the sudden frequency jumps at the

start and the end of each pulse signal, we apply a Hamming

window to smooth the two ends of each pulse. As a result, the

pulse signals could sample the phone-use status ten times per

second to capture the gripping hand.

2) System Flow: The architecture of our system is shown in

Figure 4, which takes the smartphone microphone recording

as the input. It is important to note that our system can be

integrated with voice assistant to reuse its recording without

incurring additional recording tasks. The Data Preprocessing
is performed first to prepare the data for analysis. It applies

a bandpass filter to remove the noises outside of the sensing

CNN-based Phone-use Status Recognition

Data Preprocessing

Short Time Fourier 
Transform Derivation

CNN-based
Binary Classifier

Denoise Synchronization Segmentation

Smartphone Microphone Recording

Handheld Phone Distraction Detection

Current Phone-use 
Status Sample…… Handheld or Handsfree?

Adaptive Window-based 
Error Correction

Distraction Instance 
Timing Derivation

Fig. 4. The architecture of our system.

signal frequency range and synchronizes the data by referring

to the original audio. Based on that, we can find the start and

end of the pulse signal to obtain the pulse segment, which

contains the information about the phone-use status.

The core of our system consists of two components. The

CNN-based Phone-use Status Recognition processes the pulse

sound and recognizes the phone-use status at the current

sampling point. Based on a series of the most recent phone-

use status samples, the Handheld Phone Distraction Detection
further captures the distracted driving instance and determines

its timing. Specifically, we derive the Short-Time Fourier

Transform (STFT) from the pulse sound to describe the

time-frequency characteristics of the contact object in the

acoustic domain. The 2D STFT is input to the CNN-based

binary classifier to discriminate the phone-use status between

handheld and handsfree. Furthermore, we develop an adaptive

window-based error correction method to further examine the

current status sample and correct the classification errors based

on the results of the recent pulse sounds. We then use a

threshold-based method to determine whether a distracted driv-

ing activity occurs. If the phone-use status toggles back and

forth too quickly, it is unlikely to be from human action and

is corrected. Once a distracted driving instance is confirmed,

the system would take safety measures immediately, such as

disabling phone services, sending early warnings, and notify

nearby automobiles to be aware. If the phone is detected to be

dropped off, the phone services can be restored. By capturing

the phone-grabbing and drop-off time, we obtain the detailed

timing information of each distracted driving instance.

IV. METHOD DESIGN

A. Data Pre-processing

After obtaining the data from the microphone buffer, we

first pre-process it for denoising, synchronization and seg-

mentation. In particular, we design a bandpass filter with the

18kHz-to-22kHz passband to reduce the noises outside of the

sensing signal’s frequency range. For example, the engine,

road and wind noises can be removed, which are mainly on the
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frequencies below 6kHz [24], and the car audio sound impact

could be reduced. After denoising, we can focus better on the

sensing signal changes caused by different contact objects.
Next, we run a synchronization scheme to precisely locate

the pulse signal in the microphone data. Specifically, we

iteratively shift the microphone data x̂ and compute its cross-

correlation with the original pulse signal x. The shift length

leading to the maximum cross-correlation coefficient indicates

the time delay between the two signals as expressed by

delay = argmax
m

N−m−1∑

n=0

x̂(n+m)x(n), (1)

where m is the number of samples to shift. After subtracting

this delay, we can find the start and end of the sensing sound by

referring to the original pulse signal. The resulted 25ms pulse

segment is used for further analysis. We further normalize the

amplitude of the pulse segment to be within the range [−1, 1].
It is important to note that the pulse signal is generated every

100ms, and the 75ms microphone audio that comes after the

pulse are mainly the echo sounds. This audio part is heavily

affected by the phone’s in-vehicle location and is discarded.
Furthermore, most smartphones are embedded with two

microphones for noise cancellation (e.g., one at the top and one

at the bottom). By using the two acoustic channels, we can

leverage the spatial diversity to capture more characteristics

of the contact object. Therefore, we use the two mics to

independently sense the contact object and integrate their

results to make a decision, which reduces the errors of each

single mic and is robust.

B. Short-Time Fourier Transform
We derive the Short-Time Fourier Transform (STFT) from

the pulse signal to describe the characteristics of the contact

object in the acoustic domain. STFT presents the frequency

spectrum along time, which captures how each spectral point

of the signal is interfered by the hand or a support surface in

the vehicle. In particular, we use a sliding window to compute

the Discrete-Time STFT (DT-STFT) of the pulse signal, which

results in a 2D image. The value of each image pixel at sample

m and frequency f is expressed by Equation 2, where w(n)
is a window function.

DT -STFT (m, f) =
∞∑

n=−∞
x̂(n)w(n−m)e−j2πfn (2)

Though the derived DT-STFT covers the microphone’s all

frequencies, which span from 0 to 24kHz, we crop the image

to only focus on the pulse signal’s frequency range from

18kHz to 22kHz. Figure 5 shows the feasibility of using

the DT-STFT image of the pulse signal to differentiate six

different scenarios. We can observe that the DT-STFT images

show distinct pixel patterns among all the contact objects.

For example, the in-hand scenario presents several strong

spectral points around 19kHz, while the center console, pocket

and seat show lower amplitudes around this frequency. When

the phone is on the center console, cup holder, pocket and

phone mount, the received pulse signal has great amplitudes

between 20kHz and 22kHz. In comparison, the gripping hand

(a) In hand (b) On center console (c) On cup holder

(d) In pocket (e) On seat (f) On phone mount

Fig. 5. Short-time Fourier transform of different phone use statuses.

suppresses the pulse signal significantly on these frequencies.

The reason is that the impact on the pulse signal depends on

the contact object’s material, contact area and pressure, which

may reinforce the signal at some frequencies but suppress it at

the others. Our next step is to use a deep learning algorithm to

discriminate the handheld phone use from the other handsfree

scenarios based on the DT-STFT images.

C. CNN-based Binary Classifier

We resize all the DT-STFT images into a fixed size and

process them using a binary classifier based on Convolutional

Neural Network (CNN). CNN is widely used to analyze

images by learning their patterns. To recognize the gripping

hand based on DT-STFT images, we develop a CNN-based

binary classifier with three convolution layers and one fully

connected layer, which is a CNN structure widely used on

mobile devices [25]. The output dimensions in each layer

are tuned to reduce the processing time while ensuring the

accuracy. Specifically, the dimensions of the output can be

calculated as

dimensions = (m−k+2d
l + 1)× (m−k+2d

l + 1)× t (3)

where m, k, l, d and t are the input image size, the kernel

size, the step length, the number of padding applied and the

number of filters.

The detailed structure of our CNN classifier is as shown in

Table I. In particular, the dimensions of the normalized input

image is 150×150. The convolutional kernel size is 3×3 and

the pooling kernel size is 2 × 2. The step length is set as 1,

the number of padding applied is set as 0, and the number

TABLE I
THE STRUCTURE OF OUR CNN-BASED BINARY CLASSIFIER

Layer Output Shape Param #
Input: short-time Fourier transform (150, 150, 3) 0
Conv2D + RecLineU (148, 148, 32) 896
Max Pooling 2D (74, 74, 32) 0
Conv2D + RecLineU (72, 72, 32) 9248
Max Pooling 2D (36, 36, 32) 0
Conv2D + RecLineU (34, 34, 32) 9248
Max Pooling 2D (17, 17, 32) 0
Flatten (9248) 0
Dropout (9248) 0
Dense (128) 1183872
Dense 1 (60) 7740
Dense 2 (2) 122
Output: Probability in [0, 1] (1) 0
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of filters is 32. The dimensions after the first convolution

operation is 148×148×32 as computed by the above equation.

Since the kernel size of the pooling layer is 2, the dimension

after the first pooling operation is 74× 74× 32. We keep the

same configuration for the rest of the convolution and pooling

layers. At the end of the model, we utilize the softmax function

to normalize the network output and obtain a probability for

each class as the decision confidence or CNN score. We then

utilize the Adam as the optimizer, which leverages the power

of adaptive learning rates to find individual learning rates for

each parameter. We use sparse categorical cross-entropy as

the model’s loss function since we expect class labels to be

provided as integers instead of one-hot encodes ones.

Our CNN-based algorithm performs the binary classification

to discriminate the handheld and handsfree phone uses, which

consists of two phases. During the training phase, we involve

a number of people to collect the handheld and handsfree

phone-use instances. Moreover, the various handheld phone-

use activities are considered in order to cover the various

scenarios when the user holds the phone still, tap/swipe on

the phone screen and hold the phone close to face (e.g.,

making phone calls). It is important to note that these phone-

use activities generate sounds and cause the handheld status

to be unstable. Our system does not rely on these sounds

to recognize the handheld phone use, because they differ

significantly among different people and different activities.

These acoustic noises mainly reside at low frequencies and

are suppressed by our bandpass filter. Though the phone can

be used differently in the driver’s hand, our CNN algorithm

can still distinguish them from the handsfree scenarios, as the

phone is consistently in the user’s hand, which is discernible

from other contact objects. Additionally, we separately train

two CNN models for the phone’s Mic 1 and Mic 2, which

analyzes the contact object from two acoustic channels.

During the testing phase, the DT-STFT images of the

testing pulse sound are input to the two CNN models to

process independently. The CNN scores of the two models are

integrated to make the classification decision. This result is the

phone-use status sampled by one sensing pulse. The running

time and memory usage of our model is 150 MFLOPS and

5MB, respectively. Therefore, running our model on mobile

processors is practical and inexpensive. Besides, the trained

model has a size of 14.8MB, which is portable enough for

mobile devices for real-time inference.

D. Handheld Phone-Use Monitoring

The accurate classification of each pulse sound is the basis

for monitoring the phone use and detecting distracted driving

instances. But monitoring the phone use in practical in-vehicle

scenarios is more challenging, as even the classification error

of a single sample could come at a tremendous cost. We

continue to investigate the practical phone-use monitoring and

correct the sample errors to cope with the false positives and

false negatives in the classification results.

Our system is designed to sample the phone-use status ten

times per second. The phone-status monitoring result is a
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Fig. 6. The phone-use monitoring and classification error correction.

sequence of labels between handheld and handsfree, based on

which the system decides when the user grabs or drops off the

phone. We design an adaptive window-based error correction

filter to process the label sequence based on the flip-and-merge
rule. The adaptive window starts from the first sample of the

current instance and compares it with its adjacent next sample.

If their labels are the same, the window grows its size by one

and examines the next two consecutive samples. This recursion

continues until the sample status changes. The current window

extracts a sample chunk, and its size W is recorded. Then, the

above process repeats to find the next chunk.

The flip-and-merge rule further determines each chunk to be

an error or a valid chunk with two thresholds th1, th2 (th1 <
th2), where a valid chunk represents a complete or a partial

instance. The intuition is that when a driver uses a phone, the

duration can not be too short (even for checking time). If W ≥
th2, the chunk is determined to be a valid chunk. If W < th1,

the entire chunk is considered to be misclassified because the

phone status toggles back and forth too fast, and the labels

of its all samples are flipped. This chunk after correction is

merged to its closest valid chunk. If th1 < W < th2, we need

to examine the labels of its two valid neighbor chunks, vpre
and vnext. If vpre = vnext, we consider this current chunk to

be erroneous, so that it is flipped and merged with its neighbor

chunks. If vpre �= vnext, we keep the label of the current chunk

and merge it with the valid neighbor chunk that has the same

label. As a result, the handsfree and handheld instances are

obtained. Especially, the handheld instance is detected, if the

prior chunk is a handsfree instance and the current chunk size

grows larger than th2 (it is not necessary to wait for obtaining

an entire chunk). The first sample of the current chunk then

captures the handheld instance start, and its end is determined

when the next chunk is confirmed to be a handsfree instance.

Empirically, we use 0.5s and 0.8s for th1 and th2.

Figure 6 illustrates the phone-use monitoring when a driver

grabs the phone for 5 seconds and then drops it off. The

top figure presents the spectrogram of this process, where

the ultrasonic pulses periodically sense the phone-use status,

and the transient state sounds (i.e., phone-grab and drop-off
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Fig. 7. Eleven experimental scenarios in the vehicle.

actions) show the main signal powers at lower frequencies.

The bottom figure illustrates the phone-use status monitoring

results. We observe that though some samples are mistakenly

classified, they can be corrected by our adaptive window-based

filter. The resulted phone-use status sequence is close to the

ground truth curve. From this monitoring result, we can detect

the complete distracted driving instance as well as determining

its start, end and duration.

V. PERFORMANCE EVALUATION

A. Experimental Setup

To evaluate our system, we develop an experimental plat-

form based on Android, which periodically sends ultrasonic

pulse signals and records the stereo sounds simultaneously.

We use this platform to collect data from three smartphone

models, Samsung Galaxy S8, Motorola Moto G8, and Google

Pixel2, and the data is processed offline. These devices run

Android 9.0, and the microphone sampling rate is set to

48kHz. We also test two vehicle models, Nissan Rogue (Car A)

and Volkswagen Tiguan (Car B). We develop our CNN-based

binary classifier based on Keras 2.4.3. We recruited fourteen

participants for data collection. As shown in Figure 7, each

participant was asked to use the phone in eleven scenarios,

including four handheld phone uses (i.e., holding the phone

still or reading, texting, scrolling and calling) and seven hands-

free scenarios (i.e., in a coat pocket, pant pocket, cup holder,

center console, phone mount, phone charging on phone mount

and seat). For each scenario, the participant was asked to re-

grab or reposition the phone 40 times to include behavioral

inconsistency and phone location differences. We apply half

data for training and half for testing.

The overall performance is evaluated based on fourteen

participants, eleven scenarios, car A and Samsung S8 with city

driving. We also investigate the various impact factors based

on four participants and eleven scenarios. In particular, the

device model and the car model impacts are studied. Moreover,

four typical in-vehicle environments engine off, engine on, city
driving and highway driving are tested and compared, where

the practical in-vehicle noises caused by the engine, road

conditions and traffic are involved. Additionally, the impact

of the car audio (e.g., radio sounds) is studied. Furthermore,
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Fig. 8. Overall performance of our system.

we monitored four participants’ phone use while driving on

the highway, in which each participant was asked to use the

phone by grabbing it 40 times from the seat, center console,

cup holder, phont mount and pocket for an hour monitoring.

Due to safety reasons, when the car was moving, the phone-

use experiments were performed by the front passenger.

B. Overall Performance

1) Handheld vs. Handsfree: The ROC curves of our system

to recognize the phone-use status are presented in Figure

8. We find the system achieves a high True Positive Rate

(TPR) and low False Positive Rate (FPR) to discriminate

handheld from handsfree. In particular, when integrating the

two microphones, our system achieves 98.4% TPR and 0.5%

FPR, and the Equal Error Rate (EER) is 1.1%. The result

is very promising as the system correctly recognizes the

handheld and handsfree scenarios, regardless of how the driver

uses the phone and who holds the phone. The result also

indicates that our system is effective in practical city driving

scenarios. Furthermore, we find Mic 1 performs better than

Mic 2. The reason is that Mic 1 is at the top of the phone,

which is far from the bottom speaker. Compared to Mic 2 that

is close to the speaker, the Mic 1 received sounds travel across

the phone case and interact better with the contact object to

capture its characteristics.
2) Phone-use Scenarios: Next, we investigate how the sys-

tem discriminates each of the eleven phone statuses between

handheld and handsfree. Figure 9 presents gripping hand

Detection Rate (DR) in four handheld scenarios and handsfree

DR in seven handsfree scenarios. We observe that our system

performs well for all eleven scenarios, obtaining a mean 99.8%

DR. For example, reading and calling perform the best among

the four handheld scenarios with a 100% accuracy. The DRs of

scrolling and texting are slightly lower, which are 99.6%. The

reason is that the hand movements in the two scenarios cause

noises and the slightly unstable contact relationship between

the phone and the hand. For the seven handsfree scenarios,

except for console and pant pocket that perform with 99.5%

DR and 99.0% DR, respectively, the other five scenarios all

achieve a 100% DR to be recognized as handsfree. The results

indicate that our system successfully classifies the phone-use

scenarios based on their contact with the phone.
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3) Individual Difference: We also study how the system

performs for different users. Figure 10 presents the DR of

four types of handheld phone-use activities for fourteen users.

We observe that the system accurately detects the handheld

phone use for all participants with an average 99.8% DR.

Moreover, more than half of the users achieve a DR of 100%,

and the lowest DR is 98.7%. The results show that our system

can work for different users regardless of their unique hand

geometry and gripping strengths.

C. Impact Factors

1) Device Models: We now investigate the impacts of

device models. Our participants were asked to use three

different phones in Car A, and the above eleven types of phone

statuses were collected during city driving. Figure 11 shows

the classification accuracy for each device. We observe that all

three devices accurately distinguish the handheld phone uses

from the handsfree. In particular, Google Pixel 2 performs

the best with 99.6% accuracy. The performances of Samsung

Galaxy S8 and Motorola G8 are slightly lower, which are at

98.9% and 99.0%, respectively. The results indicate that our

system can be broadly deployed on different devices.

2) Car Models: Similarly, the shells and interiors of dif-

ferent car models may affect the performance of our system.

Therefore, we repeat the above experiments in Car B using

Samsung Galaxy S8. Figure 12 shows the performance of each

car model. It can be observed that both car models achieve a

good performance. In particular, Car B achieves an accuracy

of 99.6%, which is slightly higher than Car A. The reason may

be that Car B has a thick shell, which suffers less from the

wind, road and engine noises. The results show our system is

able to detect distracted driving with different car models.

3) Vehicle Engine Status: The car engine at different sta-

tuses or speeds generates different levels of noises, including

increased or decreased road and wind noises. We thus evaluate
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our system under different engine statuses, including city
driving, highway driving, engine on and engine off. We use

Car A and Samsung Galaxy S8 for this impact study. Figure

13 presents the classification results under the four different

engine status. Not surprisingly, engine off performs the best

with 100% accuracy, as this is a quiet in-vehicle environment.

Engine on also performs well with 99.8% accuracy. City
driving and highway driving achieve a slightly lower accuracy,

which are 98.9% and 98.8% respectively, though they suffer

from different types of noises. In particular, city driving mostly

involves the noise from frequent accelerations and braking in

the traffic, while highway driving experience more engine and

wind noises. However, our system is robust enough to detect

the phone-use distraction in both driving environments.

4) Car Audios: When driving, the drivers may turn the

radio or music on. The car audio sounds may interfere our

sensing signal and affect the system performance. We therefore

evaluate our system with the car music on. The experiment was

done with Car A and Samsung Galaxy S8, under the engine
on status. The music sounds were between 56 ∼ 60dB. Figure

14 compares the performances of our system when the music

is on or off. We observe that the music sounds do have a

slight impact on our system performance. The classification

accuracy degrades to 97.0% when the music is on, which is

still high. The result confirms the robustness of our system to

work under car audios.

D. Phone-use Monitoring Case Study

Lastly, we conducted a case study to monitor four partic-

ipants’ phone use during highway driving and detect their

distracted driving activities. Our system achieves 99.5% detec-

tion rate to capture all the distracted driving activities of these

participants, and the false positive rate is 0.4%. The promising

performance is the result of both high classification perfor-

mance and the system’s error correction capability. Figure 15

and Figure 16 further present the distributions of the absolute

417

Authorized licensed use limited to: Louisiana State University. Downloaded on April 12,2022 at 22:14:45 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 15. Distraction start estimation. Fig. 16. Distraction end estimation.

time errors to determine the start and end of each distracted

activity. Our system achieves a median error of 0.76 second to

determine the start of a distracted driving activity. The median

error to determine the end time is 0.55 second. These errors

are mainly resulting from the transient states when the user

grabs and drops the phone. We also find that most of the larger

errors (e.g., between 1s and 2s) occur when the user grabs the

phone from or drops it to a phone mount, because these actions

are relatively less smooth resulting a longer transient time.

The results confirm that our system is effective to monitor the

driver’s phone use.

VI. CONCLUSION

This work proposes a phone-use monitoring system to

address handheld phone distractions by sensing the user’s

gripping hand. By emitting periodic ultrasonic pulse signals

for sensing, the proposed system continuously discriminates

whether the phone is held by hand or placed on a support

surface in the vehicle, such as seat, center console, pocket and

phone mount. When detecting that the driver’s hand reaches

the phone, the system disables all phone services except

emergency calls to eliminate the distraction. In particular, we

derive the short-time Fourier transform of each received pulse

signal to capture the unique impacts imposed by the gripping

hand and the various support surfaces. Moreover, we develop

a CNN-based binary classifier to analyze the STFT images

and discriminate the phone use between the handheld and

the handsfree status. We further design an adaptive window-

based filter to correct the classification errors to capture each

complete handheld phone-use activity, as well as determining

its start, end and duration. Extensive experiments in practical

driving environments show that our system detects the smart-

phone handheld status with 99% accuracy and captures the

start of the distraction period with 0.76 second median error.
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